A Modeling and Classification Method of Ultrasonic Signals Based on Empirical Mode Decomposition and Neural Network

نویسندگان

  • YANHUA ZHANG
  • LU YANG
  • JIANPING FAN
چکیده

A new modeling and classification method of ultrasonic signals based on empirical mode decomposition(EMD) and neural network is put forward in the paper. Firstly, the original ultrasonic flaw signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs) by EMD, and the Fourier transformation of IMF is made. The next step is to find a set of classification values from time domain and frequency domain of IMFs relating to flaw information, and to analyze these classification values and construct vector as signal eigenvector for identification. Finally make BP neural network as diagnoses decisionmaking classifier, input signal eigenvector, output flaw type. Experimental results show that the method has better performance in detecting ultrasonic flaw signals. Key-Words: ultrasonic signal; empirical mode decomposition(EMD); intrinsic mode function; modeling; neural network; eigenvector

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...

متن کامل

Study on Feature Extraction and Classification of Ultrasonic Flaw Signals

One of the most important techniques of ultrasonic flaw classification is feature extraction of flaw signals,which directly affects the accuracy and reliability of flaw classification.Based on the non-stationary characteristic of ultrasonic flaw signals, a new feature extraction method of ultrasonic signals based on empirical mode decomposition (EMD) is put forward in the paper. Firstly, the or...

متن کامل

Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm

Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...

متن کامل

A novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems

Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...

متن کامل

Empirical Mode Decomposition and Rough Set Attribute Reduction for Ultrasonic Flaw Signal Classification

Feature extraction and selection are the most important techniques for ultrasonic flaw signal classification. In this study, empirical mode decomposition (EMD) is first used to obtain the intrinsic mode functions (IMFs) of original ultrasonic signals. Such IMFs and traditional time as well as frequency domain based statistical parameters are extracted as the initial features of flaw signal. Aft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010